
Improving the Tracking Ability of KRLS using Kernel Subspace Pursuit
Jad Kabbara and Ioannis N. Psaromiligkos

jad.kabbara@mail.mcgill.ca,yannis@ece.mcgill.ca DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

Problem Statement

Track time-varying systems using KRLS.

{x1, y1}, {x2, y2}, … , {xn, yn}

Sparsification
Rule

𝐷𝑛 = [𝐱 1, … , 𝐱 𝑚𝑛
]: The

dictionary containing a subset
of 𝑚𝑛input vectors up to time 𝑛.

Weight Vector 𝜶

Prediction
Algorithm

Input-Output
pairs arriving
sequentially

Dictionary

Select specific
samples

Example: Kernel
Adaptive Filtering
Algorithm (KRLS)

Track changes in the
input-output pair

Kernel Adaptive Filtering: KRLS

Kernel Adaptive Filtering:
I Kernel k : X × X 7→ R with X : Input space.
I Kernel Trick: k(x, x′) = 〈φ(x), φ(x′)〉 where φ : X 7→ H maps

input vectors from X into a Hilbert space H (RKHS).
I Adapt estimated output based on error in the

high-dimensional RKHS H.

KRLS
I KRLS minimization problem:

min
α
‖Knα− yn‖2 , (1)

where yn = [y1, . . . , yn]
T, Kn: Gram matrix of the kernel k with

entries [Kn]i,j = k(xi, xj), α = [α1, . . . , αn]
T: a weight vector.

Sparsification
I Surprise Criterion: Add element to dictionary only its

usefulness measured by the surprise Sn lies within a range
specified by thresholds T1 and T2.

Sn = − ln p(xn, yn|Dn−1). (2)

Pruning
I Remove the Oldest, Minimal Introduced Error criterion, etc.

Not good enough for tracking time-varying systems!

Motivation

Motivation: Decouple the size of the of the weight vector
from the dictionary size.

0 500 1000 1500 2000 2500 3000

10
−1

10
0

iteration n

M
S

E

SW−KRLS (M=2000)

SW−KRLS (M=200)

FB−KRLS (M=2000)

FB−KRLS (M=200)

Approach: Select the M dictionary elements that best
approximate the N most recent target values.

Proposed Method

{x1, y1} {x2, y2} {x3, y3} {x4, y4} {x5, y5} {x6, y6} … {xn, yn}

𝐱 1 𝐱 2 𝐱 3 𝐱 4 𝐱 𝑚
𝑛

…

…

𝑦𝑛−𝑁+1 𝑦𝑛−𝑁+2 𝑦𝑛

Selection via Sparsification

Tracking the N most recent
target values

Subspace Pursuit (SP)-KRLS

min
α
‖Knα− yn‖2 s.t. α is M − sparse. (3)

I Maximum size M of weight vector: fixed and independent
from the size of the dictionary.

I If sample is admitted to the dictionary and dictionary size
exceeds M, KSP is used to select M elements to form the
LS regressor.

I KSP selects out of the αM (α > 1) most recent entries in the
dictionary Dn = [x̃1, . . . , x̃mn] the M elements that lead to the
best approximation of the most recent N received target
values.

I KSP gram matrix Gn: obtained by evaluating k(·, x̃i),
i = mn − αM + 1, . . . ,mn at the N most recent inputs
xn−N+1, . . . , xn.

I KSP vector yn: vector consisting of the most recent N target
values, i.e., yn = [yn−N+1, . . . , yn]

T.
I KSP does not run at every iteration.

Summary of SP-KRLS

When the system receives a new pair {xn, yn}, it is checked
against the Surprise Criterion (SC) test.

Two possible scenarios:

1. If it does not pass the SC test→ input vector not added to
dictionary, weight vector updated appropriately via the KRLS
recursions.

2. If input vector admitted to the dictionary→ two cases:
(a) If dictionary size ≤ M, weight vector updated via regular
KRLS recursions.
(b) If dictionary size > M, use KSP to identify the M input
vectors that will be used by the KRLS algorithm.

Kernel Subspace Pursuit

I Gn: The mn × n Gram matrix obtained by evaluating the
functions k(·, x̃i), i = 1, . . . ,mn at the input vectors x1, . . . , xn,
i.e.,

[Gn]i,j = k(x̃i, xj). (4)
I T: A set of column indices.
I GT: The matrix consisting of columns of Gn with indices in T.
I Projection of yn onto GT: proj(yn,GT) := GTG†Tyn

Algorithm 1 Kernel Subspace Pursuit Algorithm

Input: M, yn, D.
Initialization:
Compute G using (4).
T0 = {Indices of the M largest magnitude entries in the vector

Gy}
r0 = yn − proj(yn,GT0)

Loop: At iteration ` (1 ≤ ` ≤ 5), execute the following:
T̃` = T`−1∪ {Indices of the M largest magnitude entries in the

vector GTr`−1}
T` = {Indices of the M largest magnitude entries in G†

T̃`
yn}

r` = yn − proj(yn,GT`)
If ||r`||2 > ||r`−1||2, let T` = T`−1 and exit the loop.

Output: T`

Simulation Results

Compare the performance of SP-KRLS to that of ALD-KRLS,
FB-KRLS and SW-KRLS.

Tracking of a Time-Varying Wiener System

I Training set: 3200 sample points, test set: 400 sample
points.

I SP-KRLS thresholds for learnable data: T1 = 3 and T2 = −3.
I SP-KRLS sparsity level: M = 200.
I KSP number of recent target values: N = 10.
I Gaussian kernel with a width σ = 0.8.

0 500 1000 1500 2000 2500 3000

0.1259

0.1995

0.3162

0.5012

0.7943

iteration n

M
S

E

ALD−KRLS

SP−KRLS

SW−KRLS

FB−KRLS

Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada

