

Approach: Select the *M* dictionary elements that best approximate the N most recent target values.

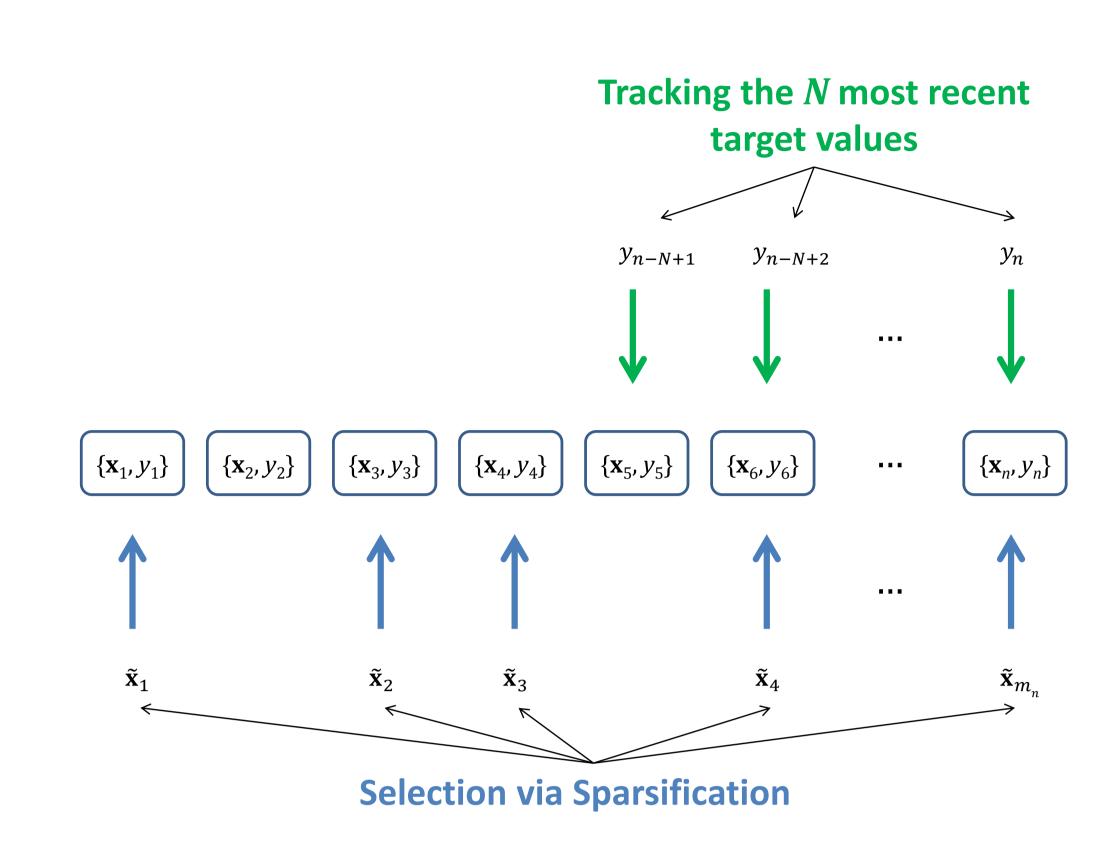
iteration

10

2500

3000

Improving the Tracking Ability of KRLS using Kernel Subspace Pursuit Jad Kabbara and Ioannis N. Psaromiligkos jad.kabbara@mail.mcgill.ca,yannis@ece.mcgill.ca



Subspace Pursuit (SP)-KRLS

 $\min_{\alpha} \|\mathbf{K}_n \boldsymbol{\alpha} - \mathbf{y}_n\|^2 \text{ s.t. } \boldsymbol{\alpha} \text{ is } M - \text{sparse.}$

- Maximum size M of weight vector: fixed and independent from the size of the dictionary.
- If sample is admitted to the dictionary and dictionary size exceeds *M*, KSP is used to select *M* elements to form the LS regressor.
- KSP selects out of the αM ($\alpha > 1$) most recent entries in the dictionary $\mathcal{D}_n = [\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_{m_n}]$ the *M* elements that lead to the best approximation of the most recent N received target values.
- ▶ KSP gram matrix \mathbf{G}_n : obtained by evaluating $k(\cdot, \tilde{\mathbf{x}}_i)$, $i = m_n - \alpha M + 1, \ldots, m_n$ at the N most recent inputs $\mathbf{X}_{n-N+1},\ldots,\mathbf{X}_{n}$
- \triangleright KSP vector \mathbf{y}_n : vector consisting of the most recent N target values, i.e., $y_n = [y_{n-N+1}, ..., y_n]^T$.
- KSP does not run at every iteration.

Summary of SP-KRLS

When the system receives a new pair $\{\mathbf{x}_n, y_n\}$, it is checked against the Surprise Criterion (SC) test.

Two possible scenarios:

1. If it does not pass the SC test \rightarrow input vector not added to dictionary, weight vector updated appropriately via the KRLS recursions.

2. If input vector admitted to the dictionary \rightarrow two cases:

If dictionary size $\leq M$, weight vector updated via regular (a) **KRLS** recursions.

(b) If dictionary size > M, use KSP to identify the M input vectors that will be used by the KRLS algorithm.

